

Principle of Mathematical Induction

• Statement : -

The sentence, which is either true or false is called as statement

- (i) 1 am 20 years old
- (ii) If x = 2, then $x^2 = 4$ Statement
- (iii) When you leave from home?

Not statem

ent

(iv)How wonderful the garden!

• The Principle of Mathematical Induction

Let p(n) be a statement involving a natural number n, if

- (i) It is true for n = 1, i.e P(1) is true; and
- (ii) Assuming P(K) to be true, it can be proved that P(K+1) is true; Then by Principle of Mathematical induction p(n) must be true for every natural number n.

- The Mathematical Statement
- (1) p(n): 1+2+3---+n = n(n+1)
- (2) $p(n): 2^n > n$

2

(3) $p(n): 1^2 + 2^2 + 3^2 + - - - >$ $n^2 = \frac{n(n+1)(2n+1)}{5}$

(4)
$$p(n): 1 + 4 + 7 + - - - + (3n - 2) = \frac{n(3x - 1)}{26}$$

(5)
$$p(n): \frac{1}{1x^2} + \frac{1}{2x^3} + - - - + \frac{1}{n(n+1)} = \frac{n}{(n+1)},$$

Where n EN, all statements are proved by Mathematical Induction.

• The word induction means, formulating a general principle (or rate) based on several particular instances.

Example : Using principle of mathematical induction prove that $\left(\frac{n^5}{5} + \frac{n^3}{3} + \frac{7n}{15}\right)$ is a natural number for all natural number n

Solution Let $P_n: \left(\frac{n^5}{5} + \frac{n^3}{3} + \frac{7n}{15}\right)$ is a natural number

P(1) = $\left(\frac{1}{5} + \frac{1}{3} + \frac{7}{15}\right) = 1$ which is a natural number

P(1) is true.

Let P(k) : $\left(\frac{k^5}{5} + \frac{k^3}{3} + \frac{7k}{15}\right)$ is a natural number be true

Now
$$\left(\frac{(k+1)^5}{5} + \frac{(k+1)^3}{3} + \frac{7(k+1)}{15}\right)$$

= $\frac{1}{5}[k^5 + 5k^4 + 10k^2 + 5k + 1] +$
 $\frac{1}{3}[k^3 + 3k^2 + 3k + 1] + \left(\frac{7}{15}k + \frac{7}{15}\right)$
 $\left(\frac{k^5}{5} + \frac{k^3}{3} + \frac{7k}{15}\right)$ is a natural number

Also $k^4 + 2k^3 + 3k^2 + 2k$ is a natural number

P(k+1) is true, whenever P(k) is true

P(n) is true is true for all natural number.

Stretch Yourself

Prove the following by principle of mathematical induction

1.
$$1+2+3+4....+P = \frac{p(p+1)}{2}$$

2. $\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \cdots + \frac{1}{x(x+1)} = \frac{x(x+1)(2x+1)}{6}$
3. $a+(a+d) + (a+2d) + \dots + (n-1)d = \frac{n}{2}[2a + (n-1)d]$
4. $1 \times 3 + 2 \times 4 + 3 \times 5 + \cdots + n \times (n+2) = \frac{1}{6}n(n+1)(2n+1)(2n+1)$
5. $2+5+8+11+\cdots + (3n-1) = \frac{1}{2}n(3n+1)$
6. $5^{3n} - 1$ is divisible by 124 for all $n \in N$
7. $1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots + \frac{1}{n^2} < 2 - \frac{1}{n}$ for all $n \ge 2, n \in N$
8. $7^{2n} + 2^{3n-3} \times 3^{n-1}$ is divisible by 25 for all $n \in N$

Mathematics (311)

+7)

Senior Secondary Course Learner's Guide, Mathematics (311)

9.
$$1^2 + 3^2 + 5^2 + \dots (2n-1)^2 = \frac{1}{3}n(4n^2 - 1)$$

10. $4^{2n} + 15n - 1$ is divisible by 9 for all $n \in N$