12

Binomial Theorem

Binomial Theorem

The Statement of Binomial expansion $(x + y)^n$, where n is the positive integer is known as Binomial theorem.

$$(x + y)^n =$$
 $nc_0 x^n + nc_1 x \cdot^{n-1} y^1 +$
 $nc_2 x^{n-2}$.

 $+ - - - - + (x + y)^n =$
 $nc_{n-1} xy^{n-1}$
 $nc_n y^n$, where $n \in \mathbb{N}$ and $x, y \in \mathbb{R}$

General Term in a Binomial Expansion

$$T_{r+1} + nc_r x^{n-r} y^r$$

Middle Terms in a Binomial Expansion

Case -1: When exponent n of the binomial is even, then $\left(\frac{n}{2}+1\right)^{th}$ term is the middle term.

Case -2: When the exponent n of a binomial is an odd natural number, then the $\left(\frac{n+1}{2}\right)^{th}$ and $\left(\frac{n+3}{2}\right)^{th}$ terms are two middle terms.

Check Yourself

- Fourth term in the expansion of 0.1 $\left(\frac{a}{3}+9b\right)^{10}$ is-
 - (A) $40 a^7 b^3$

(B)

 $40a^3b^7$

- (C) $1890 \text{ a}^{6}\text{b}^{4}$
- (D) $1890a^4b^6$
- 0.2 Second term in the expansion of (2x $+3y)^5$ will be -
 - (A) $46 \times 2 y^3$

(B) 30

 x^3y^2

- (C) $240 \text{ x}^4 \text{ y}$
- (D)
- 810 xy^4
- The 5th term of the expansion of (x -0.3 $2)^{8}$ is -
 - (A) ${}^{8}C_{5}x^{3}(-2)^{5}$ (B) ${}^{8}C_{5}x^{3}$ 2⁵

 - (C) ${}^{8}C_{4}x^{4}$ (-2) 4 (D) ${}^{8}C_{6}x^{2}$ (-2) 6
- **Q.4** The number of terms in expansion of (x $-3x^2+3x^3)^{20}$ is-
 - (A) 60
- (B) 61
- (C) 40
- (D) 41

Senior Secondary Course Learner's Guide, Mathematics (311)

- (C) $r = \frac{n+1}{2}$ (D) $r = \frac{n-1}{2}$

- The term with coefficient ⁶C₂ in the **Q.5** expansion of $(1+x)^6$ is-
 - (A) T₁ and T₃ (B) T₂ and T₄
 - (C) T₃ and T₅
- (D) None of these
- If n is a positive integer, then rth **Q.6** term in the expansion of $(1-x)^n$ is-
 - $(A) {}^{n}C_{r} (-x)^{r}$
- (B)

 $n_{C_{\mathbf{r}}X}r$

- (C) ${}^{n}C_{r-1}(-x) {}^{r-1}$ (D) ${}^{n}C_{r-1}x^{r-1}$
- If the 4th term in the expansion of 0.7 $\left(ax + \frac{1}{x}\right)^n$ is $\frac{5}{2}$, then the values of a and n are-
 - (A) 1/2, 6
- (B) 1, 3
- (C) 1/2, 3

found

(D) can not be

The coefficient of (3r)th term and **Q.8** coefficient $(r+2)^{th}$ term in the expansion of (1 + $(x)^{2n}$ are equal then (where r > 1, n > 1) 2), positive integer)-

> (A) r = n/2(B) r =n/3

- The coefficient of a^2b^3 in $(a+b)^5$ is-Q.9
 - (A) 10
- (B) 20
- (C) 30
- (D) 40
- **Q.10** The coefficient of x^7 and x^8 in the expansion of $\left(2+\frac{x}{3}\right)^n$ are equal, then n is equal to-
 - (A) 35
- (B) 45
- (C) 55
- (D) None of these
- The coefficient of x^5 in 0.11 the expansion of $(2+3x)^{12}$ is-
 - (A) ${}^{12}C_52^5$, 3^7 (B) ${}^{12}C_62^6.3^6$
 - (C) ${}^{12}C_52^7.3^5$
- (D) None of these
- **Q.12** If the expansion of $\left(x^2 \frac{1}{4}\right)^n$, the coefficient of third term is 31, then the value of n is-
 - (A) 30
- (B) 31
- (C) 29
- (D) 32

Senior Secondary Course Learner's Guide, Mathematics (311)

- **Q.13** If A and B are coefficients of x^r and x^{n-r} respectively in the expansion of $(1+x)^n$, then-
 - (A) A = B
 - (B) $A \ge B$
 - (C) A = 0, B for some n
 - (D) None of these
- **Q.14** If $(1 + by)^n = (1 + 8y + 24y^2 +)$ then the value of b and n are respectively-
 - (A) 4, 2
- (B) 2, -4
- (C) 2, 4
- (D) -2, 4
- The number of terms in the 0.15 expansion of

$$(1 + 5\sqrt{2} x)^9 + (1 - 5\sqrt{2} x)^9$$
 is-

- (A) 5
- (B) 7 (C) 9
- (D) 10

Stretch Yourself

- 1. If $(1+x)^n = C_0 + C_1x + C_2x^2 + +$ $C_n x^n$, then find $\frac{(C_0 + C_1)(C_1 + C_2)...(C_{n-1} + C_n)}{C_1C_2...C_n}$
- 2. Find the 5th term of the expansion of $(x-2)^8$

3. Find the number of terms in the expansion of

a.
$$(1 + 5\sqrt{2} x)^9 + (1 - 5\sqrt{2} x)^9$$

- 4. Calculate the middle term in the expansion of $(1-3x+3x^2-x^3)^6$
- 5. If $(1 + x 2x^2)^6 = 1 + C_1x + C_2x^2 + C_1x + C_2x^2 + C_2$ $C_3x^3 + \dots + C_{12} x^{12}$, then calculate the value of C2+ C4+ C6+ $...+C_{12}$

Answer to check yourself

1A 2C 3C 4D 5C

6 C 7 A 8A 9A 10 C

11C 12 D 13 A 14 C 15 A