22

INVERSE OF A MATRIX AND ITS APPLICATIONS

Determinant of A Square Matrix

A square matrix A is said to be singular if its determinant is zero, i.e. |A| = 0

A square matrix A is said to be non-singular if its determinant is non-zero, i.e. $|A| \neq =0$

Minors and Cofactors of The Elements of Square Matrix

Minor

The Determinant that is left by cancelling the row and column intersecting at a particular element is called the minor of that element.

If
$$\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$
 then Minor of

a11 is

$$M_{11} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}, \text{ Similarly } M_{12} = \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}$$

Using this concept the value of Determinant can be

 $\Delta = a_{11} M_{11} - a_{12} M_{12} + a_{13} M_{13}$

Cofactor

The cofactor of an element a_{ij} is denoted by F_{ij} and is equal to $(-1)^{i+j}$ M_{ij} where M is a minor of element a_{ij}

if
$$\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

then F11 = (-1)¹⁺¹ M11 = M11 =
 $\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$
F12 = (-1)¹⁺² M12 = - M12 = -
 $\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}$

ADJOINT OF A SQUARE MATRIX

If every element of a square matrix A be replaced by its cofactor in |A|, then the transpose of the matrix so obtained is called the adjoint of matrix A and it is denoted by adj A

Thus if $A = [a_{ij}]$ be a square matrix and F^{ij} be the cofactor of a_{ij} in |A|, then

Adj A =
$$[F^{ij}]^T$$

Hence if A = $\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$, then
Adj A = $\begin{bmatrix} F_{11} & F_{12} & \dots & F_{1n} \\ F_{21} & F_{22} & \dots & F_{2n} \\ \dots & \dots & \dots & \dots \\ F_{n1} & F_{n2} & \dots & F_{nn} \end{bmatrix}^T$

Senior Secondary Course Learner's Guide, Mathematics (311)

INVERSE OF A MATRIX

If A and B are two matrices such that

$$AB = I = BA$$

then B is called the inverse of A and it is denoted by A^{-1} , thus

 $A^{-1} = B \iff AB = I = BA$

To find inverse matrix of a given matrix A we use following formula

$$\mathbf{A}^{-1} = \frac{\mathrm{adj}\mathbf{A}}{|\mathbf{A}|}$$

Thus A^{-1} exists $\Leftrightarrow |A| \neq 0$

SOLUTION OF A SYSTEM OF LINEAR EQUATIONS

MATRIX METHOD

Let

$$a_1x + b_1y = c_1$$
 ...(i)
 $a_2x + b_2y = c_2$...(ii)

Matrix equation form

$$\begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$

If A is singular, then |A|=0. Hence, A⁻¹ does not exist

If not

 $A^{-1}(AX) = A^{-1}B$ (A⁻¹A) X = A⁻¹ B X= A⁻¹B

CRITERION FOR CONSISTENCY OF A SYSTEM OF EQUATIONS

- Let AX = B be a system of two or three linear equations.
 - If |A |≠ 0, then the system is consistent and has a unique solution, given by

 $X = A^{-1}B$

 If |A |=0, then the system may or may not be consistent and if consistent, it does not have a unique solution. If in addition

 $(Adj A) B \neq O$ then the system is inconsistent

(Adj A) B = O, then the system is consistent and has infinitely many solutions.

Check Your Progress

- 1. If cofactor of 2x in the determinant $\begin{vmatrix} x & 1 & -2 \\ 1 & 2x & x-1 \\ x-1 & x & 0 \end{vmatrix}$ is zero, then x equals to-
 - (A) 0 (B) 2
 - (C) 1 (D) –1
- 2. If $\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$ and A₂, B₂, C₂ are

respectively cofactors of a_2 , b_2 , c_2 then $a_1A_2 + b_1B_2 + c_1C_2$ is equal to-

- $(A) \Delta \qquad (B) 0$
- (C) Δ (D) None of these
- 3. The equations x + 2y + 3z = 1,

2x + y + 3z = 2 and 5x + 5y + 9z = 4 have-

(A) unique solution (B) many solutions

Senior Secondary Course Learner's Guide, Mathematics (311)

(C) inconsistent (D) None of these 4. If $A = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$, then $|A + A^T|$ equals -(A) $4(a^2 - b^2)$ (B) $2(a^2 - b^2)$ (C) $a^2 - b^2$ (D) 4

5. For suitable matrices A, B; the false statement is-

(A)
$$(AB)^{T} = A^{T}B^{T}$$

(B) $(A^{T})^{T} = A$
(C) $(A - B)^{T} = A^{T} - B^{T}$
(D) $(A^{T})^{-1} = (A^{-1})^{T}$
6. If $A = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$, then $A A'$

equals -

ab

(A) I (B) A (C)
$$A'$$
 (D) 0

7. If $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 0 & 0 & 2 \end{bmatrix}$, then the value of adj

(adj A) is-

(A)
$$|A|^2$$
 (B) – 2A

(C)
$$2A$$
 (D) A^2

8. If A =
$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 3 & 1 \\ 2 & 1 & 2 \end{bmatrix}$$
, then A (adj A)

equals-

$$(A) \begin{bmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{bmatrix} \quad (B) - \begin{bmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{bmatrix}$$

(C) $\begin{bmatrix} 0 & 0 & 9 \\ 0 & 9 & 0 \\ 9 & 0 & 0 \end{bmatrix}$ (D) None of these 9. If $A = \begin{bmatrix} 1 & 2 \\ -4 & -1 \end{bmatrix}$, then $A^{-1} =$ (A) $\frac{1}{7} \begin{bmatrix} 1 & 2 \\ -4 & -1 \end{bmatrix}$ (B) $\begin{bmatrix} -1 & -2 \\ 4 & 1 \end{bmatrix}$ (C) $\frac{1}{9} \begin{bmatrix} 1 & 2 \\ 4 & 1 \end{bmatrix}$ (D) $\frac{1}{7} \begin{bmatrix} -1 & -2 \\ 4 & 1 \end{bmatrix}$ 10. If $A = \begin{bmatrix} 2 & 3 \\ 1 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 4 & 6 \\ 2 & 3 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then invertible matrices are-(A) A and B (B) B and C

(C) A and C (D) All

Stretch Yourself

1. Find the value of x, y, z for the equation

x + 2y + 3z = 1, 2x + y + 3z = 2, 5x + 5y + 9z = 4

2. The system of linear equations x + y + z = 2, 2x + y - z = 3, 3x + 2y + kz = 4 has a unique solution .Find the value of k.

Mathematics, (311)

Senior Secondary Course Learner's Guide, Mathematics (311)

- 3. If α, β, γ are the roots of $x^3 + ax^2 + b = 0$, then Calculate the value of $\begin{vmatrix} \alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta \end{vmatrix}$
- 4. If ax + by + cz = 1, bx + cy + az = 0 = cx + ay + bz, then solve |x + y - z| |a + b - c|
 - $\begin{vmatrix} z & x & y \\ y & z & x \end{vmatrix} \begin{vmatrix} c & a & b \\ b & c & a \end{vmatrix}$
- 5. If matrix A = $\begin{bmatrix} 1 & 0 & -1 \\ 3 & 4 & 5 \\ 0 & 6 & 7 \end{bmatrix}$ and its
 - inverse is denoted by $A^{-1} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}, \text{ then find the}$

value of a₂₃.

Hint to Check Yourself

1C	2 B	3 A	4 A	5 A
6 A	7 B	8B	9D	10C