

LIMIT AND CONTINUITY

If a function f(x) approaches L when x approaches 'a', we say that L is the limiting value of f(x)symbolically it is written as $\lim_{x\to 0} f(x) = L$

LEFT AND RIGHT HAND LIMITS

If a function f (x) approaches a limit l₁, as x approaches 'a' from left, we say that the left hand limit of f(x) as x→a is l₁

$$\lim_{x \to a^{-}} f(x) = l_1$$

Or
$$\lim_{h \to 0} f(a - h) = l_1, h > 0$$

• If a function f(x) approaches a limit l_2 , as x approaches 'a' from right, we say that the right hand hand limit of f(x) as $x \rightarrow a$ is l_2

$$\lim_{x \to a^+} f(x) = l_2$$

Or
$$\lim_{h \to 0} f(a+h) = l_2, h > 0$$

I.
$$\lim_{x \to a^+} f(x) = l$$
 =

- 11. $\lim_{x \to a} f(x) = l$ and $\lim_{x \to a^-} f(x) = l$
- III. $\lim_{x \to a^+} f(x) = l_1$ and $\lim_{x \to a^-} f(x) = l_2$ $\lim_{x \to a} f(x) \text{ not exit}$
- IV. $\lim_{x\to a^+} f(x)$ or $\lim_{x\to a^-} f(x)$ does not exit $\Rightarrow \lim_{x\to a} f(x)$ not exit

BASIC THEOREMS ON LIMITS

- I. $\lim_{x \to a} cx = c \lim_{x \to a} x$, c being a constant
- II. $\lim_{x \to a} [g(x) + h(x) + p(x) + \dots] = \lim_{x \to a} g(x) + \lim_{x \to a} h(x) + \lim_{x \to a} p(x) + \dots$

III.
$$\lim_{x \to a} [f(x), g(x)] = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$$

IV.
$$\lim_{x \to a} \left\{ \frac{f(x)}{g(x)} \right\} = \frac{\lim_{x \to a} x}{\lim_{x \to a} x}$$

LIMITS OF SOME OF THE IMPORTANT FUNCTIONS

- I. $\lim_{x \to a} \frac{x^{n} a^{n}}{x a} = na^{n-1}$ where n is a positive integer
- II. $\lim_{x \to 0} \sin x =$ 0 and $\lim_{x \to 0} \cos x = 1$

III.
$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

IV.
$$\lim_{x\to 0} (1+x)^{1/x} = e^{-x}$$

V.
$$\lim_{x \to 0} \frac{\log(1+x)}{x} = \lim_{x \to 0} \frac{1}{x} \log(1+x)$$

 $x) = \lim_{x \to 0} \log(1+x)^{1/x}$
VI. $\lim_{x \to 0} \frac{e^{x}-1}{x} = 1$

CONTINUITY OF A FUNCTION AT A POINT

1. A function f (x) is said to be continuous in an open inteval (a,b) if it is continuous at every point of (a,b).

2. A function f (x) is said to be continuous in the closed interval [a,b] if it is continuous at every point of the open interval]a,b[and is continuous at the point a from the right and continuous at b from the left.

$$\lim_{x \to a^{+}} \frac{f(x) = f(a)}{and}$$
$$\lim_{x \to b^{-}} f(x) = f(b)$$

Properties of Continuous Functions

If f(x) and g(x) are two functions which are continuous at a point x = a, then

- (i) C f (x) is continuous at x = a, where C is a constant.
- (ii) $f(x) \pm g(x)$ is continuous at x = a.
- (iii) f(x). g(x) is continuous at x = a.)
- (iv) f(x)/g(x) is continuous at x = a, provided $g \neq 0$
- (v) |f(x)| is continuous at x = a.

1. If
$$f(x) = \begin{cases} 4x, & x < 0 \\ 1, & x = 0 \\ 3x^2, & x > 0 \end{cases}$$
, then $\lim_{x \to 0} f(x)$

equals-

- (A) 0 (B) 1
- (C) 3 (D) Does not exist

2. If
$$f(x) = \begin{cases} -1, & x < -1 \\ x^3, & -1 \le x \le 1 \\ 1 - x, & 1 < x < 2 \\ 3 - x^2, & x > 2 \end{cases}$$
 then-
(A) $f(x) = 1$ (B) $\lim_{x \to 1} f(x) = 1$

(C)
$$\lim_{x \to 2^+} f(x) = -1$$
 (D) $\lim_{x \to 2^-} f(x) = 0$

x→l

3. The value of
$$\lim_{x \to \pi/2} \frac{1 - \sin^3 x}{\cos^2 x}$$
 is

(A)
$$-\frac{3}{2}$$
 (B) $\frac{3}{2}$

(C) 1 (D)
$$0$$

4. The value of
$$\lim_{x \to 3} \left(\frac{x^4 - 81}{x - 3} \right)$$
 is -

(C) undefined (D) None of these

5.
$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x^2} - \sqrt{1-x^2}}$$
 equals-
(A) 1 (B) 1/2

Mathematics, (311)

	(C) 0	(D) Does not exist			
6.	$\lim_{x \to 3} \frac{x-3}{\sqrt{x-2}-\sqrt{4-x}}$	= equals- x			
	(A) 0	(B) 3/2			
	(C) 1/4	(D) None of these			
7.	Function $f(x) = \begin{cases} 1+x, & \text{when } x < 2\\ 5-x, & \text{when } x > 2 \end{cases}$; $x = 2$				
	is continuous at $x = 2$, if $f(2)$ equals -				
	(A) 0	(B) 1			
	(C) 2	(D) 3			
8.	If $f(x) = \begin{cases} x \cos \frac{1}{x}, \\ k \end{cases}$	$x \neq 0$ is continuous a $x = 0$			
	x = 0, then				
	(A) k > 0	(B) k< 0			
	(C) $k = 0$	(D)k ≥ 0			
9.	If function f(x	x) = $\begin{cases} x^2 + 2, & x > 1 \\ 2x + 1, & x = 1 \end{cases}$ is			
	continuous at $x = 1$, then value of $f(x)$ for $x < 1$ is-				
	(A) 3	(B) 1–2x			
	(C) 1–4x	(D) None of these			
10.	If $f(x) = \begin{cases} \sin \frac{1}{x}, \\ k, \end{cases}$	$x \neq 0$ is continuous a $x = 0$			
	x = 0, then k is e	qual to -			

- (A) 8 **(B)** 1
- (D) None of these (C) –1

Stretch Yourself

1. If
$$f(x) = \frac{1 - \cos(1 - \cos x)}{x^4}$$
, $(x \Box 0)$ is

continuous everywhere, then find f(0).

- 2. Is Function f(x)= $\begin{cases} \frac{(b^2 - a^2)}{2}, & 0 \le x \le a \\ \frac{b^2}{2} - \frac{x^2}{6} - \frac{a^3}{3x}, & a < x \le b \end{cases},$ $\left| \frac{1}{3} \left(\frac{b^3 - a^3}{x} \right), \quad x > b \right|$
- 3. If [x] denotes the greatest integer $\leq x$, then

Find $\lim_{n \to \infty} \frac{1}{n^3} \{ [1^2 x] + [2^2 x] + [3^3 x] +$ $\dots + [n^2 x]$

4. Find the value of
$$\lim_{x \to \frac{\pi}{2}} \frac{\log\left(x - \frac{\pi}{2}\right)}{\tan x}$$

5. Find
$$\lim_{x \to \pi/2} \frac{\cot x - \cos x}{(\pi - 2x)^3}$$

Hi	urself			
1A	2 C	3 B	4 B	5 D
6 D	7 D	8 C	9 A	10 D

Mathematics, (311)