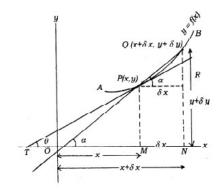
26

DIFFERENTIATION

Derivative of A Function

The limiting process indicated by $\lim_{\delta X \to 0} \frac{\delta y}{\delta x} = \lim_{\delta X \to 0} \frac{F(X+\delta X)-F(X)}{\delta X}$ is a mathematical operation. This mathematical process is known as differentiation and it yields a result called a derivative.


- (2) A function whose derivative exists at a point is said to be derivable at that point.
- (3) It may be verified that if f(x) is derivable at a point x = a, then, it must be continuous at that point. However, the converse is not necessarily true.
- 4) The symbols Δx and h are also used in place of δx
- (5) If y = f(x), then $\frac{dY}{dx}$ is also denoted by y_1 or y'

Velocity as Limit

Velocity =
$$\lim_{\delta t \to 0} \frac{f(t+\delta t)-f(t)}{\delta t} = \frac{ds}{dt}$$

Geometrical Interpretation of dy/dx

Derivative of Constant Function

The derivative of a constant is zero.

$$\frac{dx^n}{dx} = nx^{n-1}$$

Derivatives of Sum And Difference of Functions

- I. h'(x) = f'(x) + g'(x)(SUM Rule)
- II. h'(x) = f'(x) g'(x)(Difference Rule)
- III. $\frac{d[f(x)g(x)]}{dx} = f(x)g'(x) + g(x)f'(x)$ (Product Rule)
- IV. $\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{f'(x)g(x) f(x)g'(x)}{[g(x)]^2}$ (Quotient Rule)
- V. $\frac{dy}{dx} = \frac{dy}{dt} \frac{dt}{dx}$ (Chain Rule)

Check Yourself

- 1. If $y = (1+x^{1/4}) (1+x^{1/2}) (1-x^{1/4})$, then dy/dx equals-
 - (A) -1
- (B) 1
 - (C) x
- (D) \sqrt{x}
- 2. If $x \sqrt{1+y} + y\sqrt{1+x} = 0$, then $\frac{dy}{dx}$ equals -
 - (A) $\frac{1}{(1+x)^2}$ (B) $-\frac{1}{(1+x)^2}$
 - (C) $\frac{1}{1+x^2}$ (D) None of these
- 3. If $x^y y^x = 1$, then $\frac{dy}{dx}$ equals -
 - (A) $\frac{x(y+x\log y)}{y(x+y\log x)}$
 - (B) $-\frac{x(x+y\log y)}{y(y+x\log x)}$
 - (C) $\frac{y(y+x\log y)}{x(x+y\log x)}$
 - (D) $-\frac{y(y+x\log y)}{x(x+y\log x)}$
- 4. If $\sqrt{1-x^2} + \sqrt{1-y^2} = a (x y)$, then the value of dy/dx is -

(A)
$$\frac{\sqrt{1-x^2}}{\sqrt{1-y^2}}$$
 (B) $\frac{\sqrt{1-y^2}}{\sqrt{1-x^2}}$

(C)
$$-\frac{\sqrt{1-x^2}}{\sqrt{1-y^2}}$$
 (D) $-\frac{\sqrt{1-y^2}}{\sqrt{1-x^2}}$

5. If
$$f(x) = \frac{2x-4}{x^2-1}$$
 and $f'(x) = \frac{p}{(x^2-1)^2}$, then p equals-

(A)
$$x^2 - 8x - 2$$
 (B) $-2x^2 + 8x + 2$

(C)
$$4x + 2$$
 (D) $-2x^2 + 8x - 2$

6. If
$$y = \frac{x}{(x+5)}$$
, then $\frac{dx}{dy}$ equals-

(A)
$$\frac{5}{(1-y)^2}$$
 (B) $\frac{5}{(1+y)^2}$

(C)
$$\frac{1}{(1-y)^2}$$
 (D) None of these

7. If
$$y = \sqrt{\frac{1-x}{1+x}}$$
, then $\frac{dy}{dx}$ equals-

(A)
$$\frac{y}{1-x^2}$$

(B)
$$\frac{y}{x^2 - 1}$$

(C)
$$\frac{y}{1+x^2}$$

(D)
$$\frac{y}{y^2 - 1}$$

8. If
$$f(x) = \frac{2x^2 - c}{x - 2}$$
 and $f'(1) = 0$, then the value of c is-

Senior Secondary Course Learner's Guide, Mathematics (311)

9. If
$$y = \frac{x+c}{1+x^2}$$
, then the value of xy where $\frac{dy}{dx} = 0$ is-

(A)
$$1/2$$

(B)
$$3/4$$

(D) None of these

10. If
$$x = t + 1/t$$
, $y = t - 1/t$, then $\frac{d^2y}{dx^2}$ equals –

$$(A) - 4t(t^2 - 1)^{-2}$$

(B)
$$-4t^3(t^2-1)^{-3}$$

(C)
$$(t^2 + 1)(t^2 - 1)^{-1}$$

(D)
$$-4t^2(t^2-1)^{-2}$$

5. If $y = \left(1 + \frac{1}{x}\right)^x$, Find $\frac{dy}{dx}$

Hint to Check Yourself

Stretch Yourself

1. If
$$y^2 x + x^2 y + 3xy = 2$$
, then find $\frac{dy}{dx}$

2. If
$$x^3 - y^3 + 3xy^2 - 3x^2y + 1 = 0$$
, then find $\frac{dy}{dx}$ at $(0, 1)$

3. If
$$y = \frac{x\sqrt{2x+1}}{2x-1}$$
, then find dy/dx

4. If
$$x \sqrt{1+y} + y\sqrt{1+x} = 0$$
, then find $\frac{dy}{dx}$