
MODULE – 3

 355

Classes and Objects with Constructors/Destructors

Computer Science

Programming in C++

Notes

18

CLASSES AND OBJECTS
WITH CONSTRUCTORS/

DESTRUCTORS

In the previous lesson you have learnt about structure, typedef and enumerated
data types. In object oriented programming, the emphasis is on data rather than
function. Class is a way that binds the data & function together. Constructor
is a specially designed class and destructor returns the memory addresses back
to the system. In this lesson you will learn about classes, objects with
constructors and destructors.

OBJECTIVES

After reading this lesson, you will be able to:

define class and object;

access the members of the class;

learn about three visibility modes: public, private and protected;

define constructor with default arguments;

use destructor.

18.1 CLASS

A class is a way to bind the data and its associated functions together. It allows
data functions to be hidden, if necessary from external use. A class specification
has two parts.

(i) Class declaration

(ii) Class function definitions

Computer Science

MODULE – 3 Classes and Objects with Constructors/Destructors

 356

Programming in C++

Notes

The general format of a class declaration is

class class_name

{

private :

variable declarations;

function declarations;

public:

variable declarations;

function declarations;

protected :

variable declarations;

function declarations;

};

The keyword class is followed by the name of the class. The body of the class
is enclosed between braces and terminated by semi-colon. The class body
contains the declaration of variables and functions. These are collectively called
members. The variables declared inside the class are called as data members.
The functions are known as member functions. The keywords public, private
and protected are called as visibility modes / access specifiers.

The data member and member
functions present in private
and protected mode can be
accessed by the member
function in public mode. The
private and protected modes
are exactly the same except
that protected can be inherited
(explained later in this lesson) but private mode cannot be inherited. The data
member and member functions present in public mode can be accessed within
the class and also by other class of same program.

The use of keyword private is optional. By default, the members of a class are
private. If the labels are missing, members are private by default.

By default, the members of a class are
private. Private data members and
private functions can be accessed only by
member functions of a class. Public
members can be accessed from outside of
the class.

MODULE – 3

 357

Classes and Objects with Constructors/Destructors

Computer Science

Programming in C++

Notes

Class Example;

 Class Employee // class name Employee

{ int emp_no; // variable … by default private

Body of class public:

void get_emp_no(); // function declaration

void put_emp_no (); // function declaration

}

Example 1 Program to get and display Student data

include < iostream.h >

class student

{

private :

char name [80];

int rn ;

float marks ;

private :

void getdata () ;

void putdata () ;

};

void student : : getdata ()

{

cin >> name >>rn >> marks ;

}

void student : : putdata ()

{

cout << name << rn << marks ;

}

void main ()

{

student st ;

st.getdata () ;

st.putdata () ;

}

→→→→→

Computer Science

MODULE – 3 Classes and Objects with Constructors/Destructors

 358

Programming in C++

Notes

18.1.1 Creating Objects

An object is an instance of a class and it can be created by using class name.

In example 1 we have created object as

student st ;

Object can be created when a class is defined by placing their names immediately
after the closing brace.

class student

{

} x, y, z ;

The above definition would create the object x, y and z of type student.

Accessing class member

Through object, data member and member function present in public can be
accessed. The general format is :

Object name . data member ;

Object name . member function ;

The dot operator is called the class member access operator.

In example 1 we have accessed class member as st.getdata() and st.putdata().

Defining member function

Member function can be defined in two ways (i) inside the class, (ii) outside
the class.

(i) Inside the class: When a member function is defined inside a class, it is
considered to be inline by default. If a member function is very small then
it should be defined inside the class.

The class declaration of example 1 can be as follows:

class student

{

char name [20];

int rn ;

float marks ;

public :

void getdata ()

{

cin >> name >> m >> marks ;

MODULE – 3

 359

Classes and Objects with Constructors/Destructors

Computer Science

Programming in C++

Notes

}

void putdata ()

{

cout << name << rn << marks;

}

};

(ii) Outside the class: When a function has larger code then it should be defined
outside the class declaration. The prototype of such functions, however,
must be provided in the class definition. The operator ‘: :’ is known as scope
resolution operator and is used to associate member functions to their
corresponding class.

The format is :

return _type class_name : : function_name

18.1.2 Nesting of member functions

A member function can be called by using its name inside another member
function of the same class. This is known as nesting of member functions.
The following program illustrates this concept.

class greatest //class name

{

int x, y, z ; //by default public

public :

void getdata () ; //function declaration

void display () ;

int largest () ;

};

int greatest : : largest () //function definition outside class

{

int T ;

if (x > y)

T = x ;

Computer Science

MODULE – 3 Classes and Objects with Constructors/Destructors

 360

Programming in C++

Notes

else

T = y ;

if (T > z)

return (T) ;

else

return (z) ;

}

void greatest : : getdata () //function definition outside class

{

cout <<“Enter values of x, y, z” << “\n”;

cin >> x >> y >> z ;

}

void greatest : : display () //function definition outside class

{

cout << “largest value” << largest () << “\n”; //nesting of member function

}

void main ()

{

greatest A; //object of class

A. getdata (); //accessing class members with dot operator

A. display ();

}

18.1.3 Memory Allocation for objects

The member function are created and placed in the memory space only once
when they are defined in class specification. All the objects belonging to that
class use the same member functions. Space for member variable is allocated
separately for each object because member variable holds different value for
different objects.

MODULE – 3

 361

Classes and Objects with Constructors/Destructors

Computer Science

Programming in C++

Notes

Array of object

Consider the following program.

class emp

{

char name [30] ;

int empno ;

public :

void getdata () ;

void putdata () ;

};

void main ()

{

emp e [10] ;

for (i = 0; i < 10; i ++)

e [i]. getdata () ;

for (i = 0; i < 10; i ++)

e [i].putdata ();

}

In the above program, the ten objects are created, namely, e [0], e [1],
.............. e [9].

The statement e [i]. getdata () will get the data of the ith element of the
array e.

INTEXT QUESTIONS 18.1

1. Fill in the blanks:

(a) All members of a class are by default.

(b) is an instance of a class.

(c) To define member function outside the class operator is
used.

Computer Science

MODULE – 3 Classes and Objects with Constructors/Destructors

 362

Programming in C++

Notes

(d) Operator : : is known as operator.

(e) The variables declared inside the class are called as

2. State whether the following statements are true or false:

(a) A class contains only private data members.

(b) A class member is accessed using dot operator.

(c) The class declaration must end with a semicolon.

(d) Scope resolution operator is always used for defining the member

functions outside the class declaration.

18.2 CONSTRUCTOR

A constructor is a special member function that initializes the objects of its class
automatically when it is created. It is special because its name is the same as
the class name. It is invoked automatically whenever an object is created. It is
called constructor because it constructs the values of data members of the class.
It does not have any return data type, not even void.

A constructor is declared and defined as follows:

class student

{

int rn;

int total ;

public :

student () // constructor

{

rn = 0 ; total = 0 ;

}

} ;

The declaration

student st ;

Invokes the constructor, student () and assigns the value 0 to rn and total
variables.

18.2.1 Default Constructor

A constructor that accepts no parameter is called default constructor. If no such
constructor is defined, then the compiler supplies a default constructor. In that
case, it is called nothing-to-do constructor.

Constructor should be
declared in the public
section. It does not have any
return data type hence it
can not return any values.

MODULE – 3

 363

Classes and Objects with Constructors/Destructors

Computer Science

Programming in C++

Notes

18.2.2 Parameterized Constructors

The constructors that can take arguments are called parameterized constructors.

class student

{

int rn, total ;

public:

student (int x, int y) // Parameterized constructor

{

rn = x ; total = y ;

}

} ;

When the object is created, we must supply arguments to the constructor
function. This can be done in two ways:

By calling the function explicitly

By calling the function implicitly

The first call is implemented as follows :

student S1 = student (1, 70) ;

The second call is implemented as follows :

student S1 (1, 70) ;

The second method is used very often as it is shorter.

18.2.3 Copy Constructor

A copy constructor takes a reference to an object of the same class as itself
as an argument. Consider the following program segment:

class student

{

int rn, total ;

public :

student (int x, int y) // Parameterized constructor

{

rn = x ; total = y ;

}

Computer Science

MODULE – 3 Classes and Objects with Constructors/Destructors

 364

Programming in C++

Notes

student (Student &i) // copy constructor

{

rn = i. rn ;

total = i. total ;

}

};

The above program has both parameterized and copy constructor. The statement

student S1 (1, 75) ;

calls the parameterized constructor and assigns 1 to rn and 75 to total. The
statement

student S2 (S1) ;

uses copy constructor and initializes an object S2 from another object S1.
Another form of the statement is

student S2 = S1 ;

The process of initialization through a copy constructor is known as copy
initialization.

Note that the statement

S2 = S1 ;

does not invoke the copy constructor. However, it simply assigns the value of
S1 to S2, member by member.

18.2.4 Constructor with default arguments

The constructor can be declared with default arguments.

For example :

student (int rn, int total = 0) ;

Here the default value of total is zero.

Then the statement

student S1 (2) ;

assigns the value 2 to rn and 0 to total.

However, the statement

student S2 (3, 75) ;

assigns 3 to rn and 75 to total. In this case actual parameter takes the priority
over default parameter. All default values should be on the right side.

MODULE – 3

 365

Classes and Objects with Constructors/Destructors

Computer Science

Programming in C++

Notes

Consider the following statement

student (int = 0) ;

It has only one argument. It can be called in two ways.

student si() ;

student si(5) ;

In the first statement, no parameter is supplied. In the second statement, one
parameter is supplied. When no parameter is supplied, it becomes a default
constructor. When both the forms are used in a class (default constructor and
constructor with one default argument), it causes ambiguity for a statement such
as

student si;

(whether to call student () or student (int = 0).

18.3 DESTRUCTOR

It is used to destroy the objects that have been created by a constructor. The
destructor is a member function whose name is the same as the class name but
is preceded by a tilde. For example the destructor of the class student can be
defined as

~student () ;

It never takes any argument nor does it return any value. It will be invoked by
the compiler upon exit from the program (or function or block) to clean the
storage. It is a good practice to declare destructor in a program because it
releases memory space for future use.

INTEXT QUESTIONS 18.2

1. Fill in the blanks:

(a) A constructor name is the same as

(b) A constructor is executed automatically when an object is

(c) Destructor is executed at the end of the program.

(d) A class can have any number of constructors but only
destructor at a time.

(e) The name of the destructor function is same as that of class but preceded
with a symbol

(f) The constructor which accepts value from outside is called
constructor.

Computer Science

MODULE – 3 Classes and Objects with Constructors/Destructors

 366

Programming in C++

Notes

2. State whether the following statements are true or false:

(a) A constructor name is not the same as class name.

(b) In a class, you can have more than one constructor with the same name.

(c) Constructor does not return any value.

(d) A constructor that accepts no parameter is known as default constructor.

(e) Destructor never takes any arguments.

(f) Destructor is called automatically at the end of compound statement,
function or main program.

(g) Constructor initializes the data members of a class.

WHAT YOU HAVE LEARNT

Class is a way to bind the data and its associated functions together.

Object is an instance of a class.

Member function can be defined inside the class and outside the class.

Member function can be called by using its name inside another member
function of the same class. This is known as nesting of member functions.

Constructor is a special member function that initializes objects of its class.
It is special because its name is the same as the class name.

Constructor that accepts no parameter is called default constructor.

Constructors that take arguments are called parameterized constructors.

Destructor is used to destroy the objects that have been created by a
constructor.

TERMINAL EXERCISE

1 What do you understand by visibility modes in class derivations ? What are
these modes?

2 Define a class Teacher with the following specifications :

Private members :

Name 20 characters

Subject 10 characters

Basic, DA, HRA float

Salary float

MODULE – 3

 367

Classes and Objects with Constructors/Destructors

Computer Science

Programming in C++

Notes

Calculate () function computes the salary and returns it. Salary is sum of
Basic, DA and HRA

Public members :

Readdata () function accepts the data values and invokes the calculate
function.

Displaydata () function prints the data on the screen.

3. Define a class worker with the following specifications :

Private members of class worker

wno integer

wname 25 characters

hrwk, wgrate float (hour worked and wage rate per hour)

totwage float (hrwk * wgrate)

calcwg () A function to find

hrwk * wgrate with float return type.

Public members of class workder

In_data () a function to accept values for wno, wname,
hrwk, wgrate and invoke calcwg () to calculate
netpay.

Out_data () a function to display all the data members on the
screen

4. What are the special properties of a constructor function?

5. What is parameterized constructor?

6. What is copy constructor ?

7. What is the importance of destructors ?

ANSWERS TO INTEXT QUESTIONS

18.1

1. a) private b) object

c) : : d) Scope resolution

e) data members.

Computer Science

MODULE – 3 Classes and Objects with Constructors/Destructors

 368

Programming in C++

Notes

2. a) False b) True

c) True d) True

18.2

1 a) class name b) created

c) automatically d) one

e) tilde (~) f) parameterized

2 a) False b) True

c) True d) True

 e) True f) True

 g) True

